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Particle diffusion in ExB convective cells 

Hasegawa-Mima turbulence (G.Y. Park, low beta)

Simulation provides virtual laboratory





Introduction

• Computational physics is an exciting area for the future
– US: 5 SciDACs (unit physics) and 3 proto-FSPs (integrated physics);

FSP, Fusion Simulation Project for virtual tokamak, ~$25M/year 

(under planning)

– EUFORIA (EU Fusion fOr ITER Applications)

– Japan: Burning Plasma Simulation Initiative (BPSI)

– China, India, Korea

• Upon analytic and experimental supports, the computational 

physics can bring breakthroughs.

• Shortage of qualified scientists in computational fusion 

physics is becoming a serious issue.



Low level quantities

Individual particles: full-f or  f͂

First principles

Intermediate level

ñ, T̃, ũ, j,̃ q̃,  ̃,  ̃, and B̃, 

(zonal flow, etc)

High level quantities 

n, T̅, p̅, u̅, j̅, q̅, ͞, ͞, and  B̅, etc

High level Closure

Fluxes (q, )

Low level Closure
Viscosity

Electrical conductivity

Statistical (primacy) hierarchy levels
What physical quantities are we trying to compute?

Feedback



Nonlinear, multiscale, self-organization

• The low level microscopic physics determine the spatio-temporal 
behavior of the high level macroscopic quantities through the 
hierarchy.  At the same time, the macroscopic quantities affect the 
microscopic particle behaviors.  

• All level physics phenomena need to be solved together self-
consistently for a first principles simulation.

• Individual behaviors (particles) are nonlinearly coupled to the whole, 
leading to a  self-organized behavior which could not be understood 
from the individuals.

– Elementary particle  atomic physics  molecules  cell  tree or dog

– Individual particles  Super conductivity

– Stock market, History, war etc

• The matter self-organizes to give us the “laws” or “principles,” and the 
fundamental constants.

• New self-organized “laws” and “principles” are to be found from 
nonlinear-multiscale-complex study either by laboratory or virtual 
experiments.



Which level simulations do we need for ITER?

• Control room requires reduced transport model codes at 

the Highest level (reduced model), running on dedicated 

local CPUs: ͞n, ͞͞T, ͞p, ͞u, ͞j, q̅, ͞, ͞, and ͞B: Use closure 

information qualified by experiment or first principles 

simulations.  Key: how to implement self-organization?

• Fluid and gyrofluid turbulence codes: reduced model codes, 

require closure and are less accurate, but are able to 

execute speedy evaluation of the intermediate level 

hierarchical quantities (fluid fluctuations).

• First principles codes evaluate the low level hierarchical 

quantities, obtain basic understandings from virtual 

experiments, and provide closure to higher level codes.

ITER may need simulation codes at all levels.
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High and intermediate level codes

• High level, reduced transport model codes: eg, TRANSP

• Intermediate level
- Fluid, gyrofluid, and MHD: instability/turbulence codes

These valuable codes have been developed with the limited computing 

resources in mind (fast results!).   They need support from the first 

principles codes.



Gyrofluid equations

• Gyrofluid equations derived by integrating full gyrokinetic equation over 

v|| & v, to derive conservation laws for particles, parallel momentum, 

parallel energy, & average magnetic moment, etc.

• Reduces 5-D problem to 3-D, much faster

• Have to introduce closure approximations, e.g. Landau-damping and 

phase-mixing which are approximated by k-dependent parallel heat 

diffusion coefficients:
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• Collisionality is roughly handled by a 3-pole approximation to the Z-

function for linear Landau damping [Hammett et al.]

• Still an approximation: qualitatively similar to full gyrokinetics in many 

cases but can have factor of ~2 errors.  Used for physics studies like 

shear-flow suppression of turbulence.

• Improved closures by B. Scott is used for edge turbulence in GEM.

- G. Hammett -



First principles delta-f gyrokinetic code

Gyrokinetic Vlasov equation df/dt=Lf=C(f)

Gyrokinetic Poisson equation

• Delta-f codes: f=f0 + f, L= L0 + L, L0f0=Cf0

‒Start from f0 and evaluate the deviation using particle weight f=wf0 , 

df/dt = - df0/dt +C(f) = - L0 (f0) + C(f0) + Lf0 +C(f)

‒Numerically easier and consume less computing resources than the full-f codes

| |

| | )(*)(
v

Bv
t

L BEd













  b

R
vvb

,)(*)(
| |

| |0
v

Bv
t

L d













 b

R
vb

| |

)*(
v

L BE








   b

R
v

fCf
v

f
r

BE  








  0

| |

0 )*(bv

2



First principles full-f gyrokinetic code

Conventional full-f code df/dt=Lf=C(f)

‒ Established in a simple geometry (Dawson, Birdsall, etc, 1968 →)

‒ Background and turbulent dynamics are simulated together.

‒ More difficult  than delta-f in a toroidal geometry due to neoclassical 

equilibrium establishment and its interaction with turbulence

‒ Particle approach
‒ Demands more computing time (>100) (particle). no growing weight.

‒ Continuum approach
‒ More difficult numerically. Requires highly accurate conservations.
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• Elliptic:
– Poisson equation

• Parabolic
– Diffusive phenomena:  eg. Heat conduction

• Hyperbolic
– Wave phenomena

Common types of PDEs you want to pay attention
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PETSc solver library in SciDAC TOPS project (led by D. Keyes) 

has been set up for this purpose.
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• A program process using shared memory
• Parallelization is achieved through multiple threads (execution 

instructions)

• OpenMP share of the memory

• PDE dominant, mesh based codes (Eulerian continuum )

• Multiple processes using distributed memory
• Parallelization is achieved through multiple processes on multiple 

processors (cores)

• MPI communications between processors for information 

coupling between processes

• PDE non-dominant (Lagrangian PIC) 

• (Future) Sharing assisted Distributed memory architecture?
• Many cores per processor node

• Mixed MPI and OpenMP programming

Different types of parallelization 

architecture for different types of problems



• OpenMP Application Program 
Interface (API)

‒ Open standard for providing 
parallelization mechanisms 
on shared-memory Multi-
Processors

Shared memory architecture

• Processors communicate through 

variables in a shared address space

• Easy to program: Referencing data 

stored in memory is similar to 

traditional single-processor programs

• Poor scalability: Increased bus traffic slows down the memory access time.  

Shared 

Memory



• Message Passing Interface (MPI) 

for inter-process communication 

on distributed-memory

Distributed memory architecture

• The program spawns into the 

number of processes

• Easy to build large, inexpensive MPI 

cluster computers

A simple MPI execution model

• Good scalability since each processor has a separate bus with access to its own 

memory. But requires a high-speed network between processors (infiniband).

• Key: How to distribute problems to multiple processors equipped with limited 

memory spaces while minimizing  the inter-process communication.



Excellent scalability of particle codes on 
distributed memory HPC

Spring 2007 (S. Ku)

XGC1 on Jaguar Cray XT3 multi cores at ORNL



Distribute problems to multiple processors 

e.g., Particle decomposition

• Grid quantities must be replicated on each processors.

• The larger the grid number is, the more memory is needed. 

 Memory limit  Domain decomposition



Domain decomposition

Processor 1 Processor 2

• Divide the physical simulation region into many domains

utilizing the geometrical shapes.

• Each processor keeps memory of only one domain.

• Each particle is assigned to a processor according to its position.

• Communication between domains is achieved by MPI calls.

• As a particle moves to a different domain, it moves 

to the corresponding processor → some complication



Further enhanced by radial domain decomposition.



Domain and particle mixed decomposition

• Each domain can have multiple processors working in it.

• Each processor holds a fraction of the total number of 

particles in that domain.



Toroidal plasma simulations at first 

principle level

• Klimontovich system of particles

Ns(x,v,t)= i (x-Xi) (v-Vi) 

Take the time derivative

Ns(x,v,t)/t + vxNs + amvNs =0: Klimontovich equation

am =(qs/ms)[E
m+(v/c)Bm], 

Em and Bm are the self-consistent micro fields from mutual (and 

external) interactions between all the particles.

→ Impossible to handle (1020 particles with1020!  

interactions)

 Kinetic Theory in statistical mechanics

Liouville eqn., BBGKY Hierarchy, …



• Ensemble averaged Klimontovich equation

Average volume must contain large number of particles, but 

smaller than Debye sphere.

Ns(x,v,t)= fs(x,v,t) + Ns(x,v,t)

Em =E + E, Bm =B + B, am =a + a

fs(x,v,t)/t+vxfs + avfs = -< av Ns > 

Individual particle statistics    Discrete interaction (collisions)

The collision operation is simplified: Lenard-Balescu eqn → 

Fokker-Planck operator (Landau and RMJ forms)

fs , E, and B in the left hand side are statistical properties 

without the N-body interactions between the individual 

particles → approximation (sampling). Particle trajectories are 

subject to the macroscopic force only (collective).

 Hopeful



Particle simulation

• Approximate the statistical properties of the 

Ensemble averaged Klimontivich distribution 

function using finite number of shielded “marker” 

particles (101 – 103 per grid node).

• Randomly sample the distribution function in the 

phase space

• Follow the Hamiltonian characteristics (equation 

of motion) of the marker particles.

• Use particle-in-cell (PIC) grid to evaluate the 

force.



x

x

Velocity Space Resolution 

Particle code: Random sampling: NxNp=4x5

Continuum Code: Grid sampling: Nv=5 

F(v)

F(v)

Nv = 20

Nv = 5

[W. Lee]



Particle-in-cell technique

• Push the marker particles along the 
Hamiltonian characteristics.

• Locate the cell

• Scatter particles to the grid

• Solve the force field on the grid 
(E&M, gravitational, etc)

• Find macroscopic information

• Gather the field at particle positions

• Push the particles










Four point averaged deposition to grid



Continuum kinetic simulation

• Eulerian approach

– The GK eqns are solved as multi-dimensional partial differential eqns.

– Particle distribution function is defined on 5D grids in phase space

– Use the computational fluid dynamics schemes (finite difference, mainly)

• Semi-Lagrangian approach, along the Hamiltonian characteristics

df/dt=0, f(zn, t+t)=f(z*, t). Use the equation of motion to find z*

f(q,p,t)=f(q-(p/m) t, p+eq t)

– Mesh grid is kept fixed in time in the phase space (Eulerian approach)

– The Vlasov equation is integrated along the trajectories (Lagrangian approach) 

using the invariance of the distribution function along the characteristics.

– Interpolation to the grid

– Since the derivative terms are not explicitly evaluated as in a finite difference 

method (advection), relatively large time step is permitted (not limited by 

numerical instability but by numerical accuracy).

– EU (GYSELA) and Japan (GT5D)



Pros and Cons of various gyrokinetic simulation types

Types Pros Cons

Radially and 
toroidally global 

Large scale event
Toroidal mode coupling

Computationally expensive

Radially global, 
toroidally wedge

Radial relations Toroidal mode coupling?
(Verifications exist)

Radially local 
(/a→0)

Computationally cheaper Large scale radial event?

Particle 
(Lagrangian)

Simpler and cheaper 
with good v-resolution,
Easy parallelization

Particle noise

Continuum 
(Eulerian)

Particle noise is absent. 5D grid can be expensive,
Grid dissipation, Small t 
due to Courant stability

Semi-Lagrangian Particle noise is absent.
Large t

Not well explored yet. 



Pros and Cons of the full-f and delta-f methods

Methods Pros Cons

Full-f Simulations of all scales.
Non-equilibrium physics

Computationally expensive 
and difficult

Delta-f Computationally cheaper 
and simpler

•0th order scale is not 
simulated.  

•Difficult to implement 
sources and sinks.

•Noise growth problem → 
long time simulation?

Mixed-f May efficiently simulate 
large scale and/or non-
equilibrium ion physics, 
and small scale electrons 
physics together.

Unexplored



Full-f ITG simulation in global cyclone geometry

Full-f gyrokinetic turbulence simulation in toroidal geometry is difficult due to 

strong neoclassical effects (no scale separation). 

1. Grad-B drift creates an 

up-down asymmetric 

potential first.

2. Neoclassical equilibrium 

is obtained.

3. Streamers and zonal 

flows develop together 

(quasi-linear growth).

4. Streamers are torn apart.

5. Nonlinear stage proceeds.

To verify convergence, we 

ran with up to15B particles 

on 10,240 cores for ~20 hrs.



Before ITG onset

After nonlinear
Saturation

End of simulation

i reaches marginal 
stability during nonlinear 
ITG turbulence



Full-f ITG turbulence across a pre-transition L-mode 

pedestal in the real geometry edge

i=dlogTi/dlogn > 3 

at pedestal top 

(unstable), but i<2 

in the slope (stable)

3.2B particles on 

8,192 cores for ~10 

hours
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Ion thermal conductivity behavior in time

i in pedestal slope 

(I < 2)
Neoclassical settling down 

ITG growth and settling down

Neoclassical settling down 

ITG growth and settling down

• Collisionless

• 3.2 billion particles  

(3,500 particles per node)

i at pedestal top 

(I > 3)


I
(m

2
/s

)
N

Noise level

Top

Slope



<> oscillations in the edge pedestal

• Nonlocal GAM 

oscillations over the 

whole pedestal

• * ~ GAM

• Nonlocal interaction of 

turbulent energy 

through GAM

Movie of axisymmetric, 

flux-surface-averaged 

potential dynamics in 

pedestal



EXB particle motions

in the poloidal

plane (Steep pedestal)

→ large scale convective 

ExB particle motions in the 

scrape-off layer

ions

electrons

V|| >0

V|| <0

S. Ku, C.S. Chang, et al., J. Physics: 

Conference Series 46, 87 (2006)



Wall(eV)

N

Strongly sheared mean ExB profile 

in the entire edge



Spontaneous toroidal rotation in the edge

Pedestal with 

Large Er <0

in DIII-D

V||

N

1

Rotation eqn in axisymmetric core is not valid in edge

ui∥= (cTi/eBp)[kdlogTi/dr –dlog pi/dr-(e/Ti)d/dr]

With neutrals and collisions

Chang, et. al, PoP 2004

Without neutrals

Collisionless

wall

Neutrals fill up the local valley

Chang, et. al, PoP 2008



Density

VExB

=LrVExB /vs

DAnom=DL/(1+402) 

+ 0.1 m2/s

N Simulation time steps

Reduced model kinetic codes can be used to study L-H 

transition in self-consistent mean plasma dynamics. 

(XGC0, 2006)

Robust

DAnom >0.1



N

Pressure 

profile

An example of Integrated Simulation

Integrated XGC0/M3D-OMP/Elite/M3D-MPP 

simulation of ELM cycle in automated EFFIS

Pedestal buildup in 

XGC0 with B-reconstruction by 

M3D-OMP

Linear stability check (Elite)

N

Neutrals

Heat

ELM density crash to relaxation in 

resistive M3D-MPP

T=76

saturation

T = 496

relaxation



Are the computational model equations solved correctly 

and accurately?  Verification deals with mathematics.

1.Numerical studies of convergence rates

2.Monitoring of physically conserved quantities

3.Benchmarking with other codes 

4.Comparing with analytical solutions

5.Method of manufactured solution

1. L(f)=0

2. Manufacture an analytic solution by introducing a special source S, 

L(h)=S

3. Obtain exact (semi) analytic solution to the equation L(f)=L(h) and 

check how true f=h is from the code.

4. We can choose S to test various numerical properties of the code.

5. This method can provide systematic documentation of the actual 

rates of convergence, estimates of the computational error, and 

resolution requirements for different code properties. 

Code (solution) verification



XGC1 verification against analytic 

neoclassical poloidal rotation in core

ui∥= (cTi/eBp)[k dlogTi/dr –dlog pi/dr-(e/Ti)d/dr]

Simulation

Hinton-

Hazeltine

Analytic

Er(V/m)

t=30ib

Delta-f

k=k(c)



dTi/dr  0



i(m
2/s)

C-H

Simulation, DIIID

(agrees with GA 

code EKG-NEO)

NN

Er (kV/m)

Full-f

Simulation

Analytic

Banana Plateau collisional

Full-f XGC1 neoclassical verification
[Chang and Ku, TTF/ECC 2007]

Error



Example of the manufactured solution method

Verification of the FEM Poisson solver in XGC1 

gyrokinetic code

• Circular concentric 

tokamak geometry

• m=n=0 mode

• (i
2/T) 

2 = -S

S=constant

A  is an exact analytic 

solution at =r/R0=0.

• (i
2/T) 

2 = -S from 

code should approach 

A as  becomes small 

with O(2/2) error.



Are the “models” accurate representation of the real 

world? Validation deals with physics experiments.

1.The “models” include the equations and the solving conditions.

2.More meaningful after verification

3.Should include the observables at all hierarchical level, if possible.

4.New experiments may need to be designed.

5.Synthetic diagnostics is another issue for meaningful validation

• What does the experimental diagnostics measure in space and time?

• What are the uncertainties, how do we minimize them?

6.Validation metric may be set up to quantify the success of a model
“A formula for objectively quantifying a comparison between a simulation result 

and experimental data. The metric may take into account errors and 

uncertainties in both sets of data as well as other factors such as the primacy 

of the quantities being compared.”

[P. Terry et al., “Validation in Fusion Research: Towards Guidelines and 

Best  Practices,” US-EU TTF 2007, to appear in Phys. Plasmas.]

Code (model) validation



(Courtesy of C. Holland)

How do we minimize the uncertainties?

Is it a steady state code?



Statistical error matters in the validation

(Courtesy of C. Holland)



What do the experimental diagnostics measure in space and time?

Are the lower level quantities considered when the “steady state” is defined?



(Courtesy of C. Holland)

What are the uncertainties, how do we minimize them?



(Courtesy of C. Holland)

What did the experiment really see?  

PSF: Point spread function



(Courtesy of C. Holland)

Example of a GYRO validation activity (C. Holland)



Summary

• Fusion simulation can provide an exciting career

• One of the front runners in multiscale nonlinear 

self-organization science and integrated 

simulation

• Innovative contributions are needed for the 

reduced model development

• Contribution to the possible solution to the energy 

problem (semi-infinite time scale)

• Growing area

• Shortage of qualified your scientists is becoming a 

problem.

• Be ready for collaborative work with the applied 

mathematicians and computer scientists


